PEMROGRAMAN LINIER
(Sumber : Siringoringo, 2005)
Pemrograman
Linier disingkat PL merupakan metode
matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai
suatu tujuan seperti memaksimumkan keuntungan dan meminimumkan biaya. PL banyak diterapkan dalam masalah
ekonomi, industri, militer, social dan lain-lain. PL berkaitan dengan
penjelasan suatu kasus dalam dunia nyata sebagai suatu model matematik yang
terdiri dari sebuah fungsi tujuan linier dengan beberapa kendala linier.
Karakteristik Pemrograman Linier
Sifat linearitas
suatu kasus dapat ditentukan dengan menggunakan beberapa cara. Secara
statistik, kita dapat memeriksa kelinearan menggunakan grafik (diagram pencar)
ataupun menggunakan uji hipotesa. Secara teknis, linearitas ditunjukkan oleh
adanya sifat proporsionalitas, additivitas, divisibilitas dan kepastian fungsi tujuan dan pembatas.
Sifat proporsional
dipenuhi jika kontribusi setiap variabel pada fungsi tujuan atau penggunaan
sumber daya yang membatasi proporsional terhadap level nilai variabel. Jika
harga per unit produk misalnya adalah sama berapapun jumlah yang dibeli, maka
sifat proporsional dipenuhi. Atau dengan kata lain, jika pembelian dalam jumlah
besar mendapatkan diskon, maka sifat proporsional tidak dipenuhi. Jika penggunaan
sumber daya per unitnya tergantung dari jumlah yang diproduksi, maka sifat
proporsionalitas tidak dipenuhi.
Sifat additivitas
mengasumsikan bahwa tidak ada bentuk perkalian silang diantara berbagai
aktivitas, sehingga tidak akan ditemukan bentuk perkalian silang pada model.
Sifat additivitas berlaku baik bagi fungsi tujuan maupun pembatas (kendala).
Sifat additivitas dipenuhi jika fungsi tujuan merupakan penambahan langsung
kontribusi masing-masing variabel keputusan. Untuk fungsi kendala, sifat additivitas
dipenuhi jika nilai kanan merupakan total penggunaaan masing-masing variabel
keputusan. Jika dua variabel keputusan misalnya merepresentasikan dua produk
substitusi, dimana peningkatan volume penjualan salah satu produk akan
mengurangi volume penjualan produk lainnya dalam pasar yang sama, maka sifat
additivitas tidak terpenuhi.
Sifat divisibilitas
berarti unit aktivitas dapat dibagi ke dalam sembarang level fraksional,
sehingga nilai variabel keputusan non integer dimungkinkan.
Sifat kepastian
menunjukkan bahwa semua parameter model berupa konstanta. Artinya koefisien
fungsi tujuan maupun fungsi pembatas merupakan suatu nilai pasti, bukan
merupakan nilai dengan peluang tertentu.
Keempat asumsi (sifat) ini dalam dunia nyata tidak
selalu dapat dipenuhi. Untuk meyakinkan dipenuhinya keempat asumsi ini, dalam
pemrograman linier diperlukan analisis sensitivitas terhadap solusi optimal
yang diperoleh.
Formulasi Permasalahan
Urutan pertama dalam penyelesaian adalah mempelajari
sistem relevan dan mengembangkan pernyataan permasalahan yang dipertimbangakan
dengan jelas. Penggambaran sistem dalam pernyataan ini termasuk pernyataan
tujuan, sumber daya yang membatasi, alternatif keputusan yang mungkin (kegiatan
atau aktivitas), batasan waktu pengambilan keputusan, hubungan antara bagian
yang dipelajari dan bagian lain dalam
perusahaan, dan lain-lain.
Penetapan tujuan yang tepat merupakan aspek yang
sangat penting dalam formulasi masalah. Untuk membentuk tujuan optimalisasi,
diperlukan identifikasi anggota manajemen yang benar-benar akan melakukan
pengambilan keputusan dan mendiskusikan pemikiran mereka tentang tujuan yang
ingin dicapai.
Pembentukan model matematik
Tahap berikutnya yang harus dilakukan setelah
memahami permasalahan optimasi adalah membuat model yang sesuai untuk analisis.
Pendekatan konvensional riset operasional untuk pemodelan adalah membangun
model matematik yang menggambarkan inti permasalahan. Kasus dari bentuk cerita
diterjemahkan ke model matematik. Model matematik merupakan representasi
kuantitatif tujuan dan sumber daya yang membatasi sebagai fungsi variabel
keputusan. Model matematika permasalahan
optimal terdiri dari dua bagian. Bagian pertama memodelkan tujuan optimasi.
Model matematik tujuan selalu menggunakan bentuk persamaan. Bentuk persamaan
digunakan karena kita ingin mendapatkan solusi optimum pada satu titik. Fungsi
tujuan yang akan dioptimalkan hanya satu. Bukan berarti bahwa permasalahan
optimasi hanya dihadapkan pada satu tujuan. Tujuan dari suatu usaha bisa lebih
dari satu. Tetapi pada bagian ini kita hanya akan tertarik dengan permasalahan
optimal dengan satu tujuan.
Bagian kedua merupakan model matematik yang
merepresentasikan sumber daya yang membatasi. Fungsi pembatas bisa berbentuk
persamaan (=) atau pertidaksamaan (≤ atau ≥). Fungsi pembatas disebut juga
sebagai konstrain. Konstanta (baik sebagai koefisien maupun nilai kanan) dalam
fungsi pembatas maupun pada tujuan dikatakan sebagai parameter model. Model
matematika mempunyai beberapa keuntungan dibandingakan pendeskripsian
permasalahan secara verbal. Salah satu keuntungan yang paling jelas adala model
matematik menggambarkan permasalahan secara lebih ringkas. Hal ini cenderung
membuat struktur keseluruhan permasalahan lebih mudah dipahami, dan membantu
mengungkapkan relasi sebab akibat penting. Model matematik juga memfasilitasi
yang berhubungan dengan permasalahan dan keseluruhannya dan mempertimbangkan
semua keterhubungannya secara simultan. Terakhir, model matematik membentuk
jembatan ke penggunaan teknik matematik dan komputer kemampuan tinggi untuk
menganalisis permasalahan.
Di sisi lain, model matematik mempunyai kelemahan.
Tidak semua karakteristik
sistem dapat dengan mudah dimodelkan menggunakan fungsi matematik. Meskipun
dapat dimodelkan dengan fungsi matematik, kadang-kadang penyelesaiannya sulit
diperoleh karena kompleksitas fungsi dan teknik yang dibutuhkan.
Bentuk umum pemrograman linier adalah sebagai
berikut :
Fungsi tujuan :
Maksimumkan atau minimumkan z = c1x1 + c2x2
+ ... + cnxn
Sumber daya yang membatasi :
a11x1 + a12x2
+ ... + a1nxn = /≤ / ≥ b1
a21x1 + a22x2
+ … + a2nxn = /≤ / ≥ b2
…
am1x1 + am2x2 + … + amnxn
= /≤ / ≥ bm
x1, x2, …, xn ≥ 0
Simbol x1, x2, ..., xn (xi) menunjukkan variabel
keputusan. Jumlah variabel keputusan (xi) oleh karenanya tergantung
dari jumlah kegiatan atau aktivitas yang dilakukan untuk mencapai tujuan. Simbol c1,c2,...,cn
merupakan kontribusi masing-masing variabel keputusan terhadap tujuan, disebut
juga koefisien fungsi tujuan pada model matematiknya.Simbol a11, ...,a1n,...,amn
merupakan penggunaan per unit variabel keputusan akan sumber daya yang
membatasi, atau disebut juga sebagai koefisien fungsi kendala pada model
matematiknya. Simbol b1,b2,...,bm menunjukkan
jumlah masing-masing sumber daya yang ada. Jumlah fungsi kendala akan
tergantung dari banyaknya sumber daya yang terbatas.
Pertidaksamaan terakhir (x1, x2, …, xn
≥ 0) menunjukkan batasan non negatif. Membuat model matematik dari suatu
permasalahan bukan hanya menuntut kemampuan matematik tapi juga menuntut seni
permodelan. Menggunakan seni akan membuat permodelan lebih mudah dan menarik.
Kasus pemrograman linier sangat beragam. Dalam setiap
kasus, hal yang penting adalah memahami setiap kasus dan memahami konsep permodelannya. Meskipun
fungsi tujuan misalnya hanya mempunyai kemungkinan bentuk maksimisasi atau
minimisasi, keputusan untuk memilih salah satunya bukan pekerjaan mudah. Tujuan
pada suatu kasus bisa menjadi batasan pada kasus yang lain. Harus hati-hati
dalam menentukan tujuan, koefisien fungsi tujuan, batasan dan koefisien pada
fungsi pembatas.
Contoh Kasus yang
diselesaikan
Pada sub bab ini terdapat 10 kasus dengan
karakteristik berbeda yang sudah diselesaikan untuk memperkaya pembaca dalam
ilmu dan seni permodelan. Pahami dan perhatikan teknik permodelannya dengan
hati-hati.
0 comments:
Post a Comment